Users Online: 612
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 7  |  Issue : 1  |  Page : 117

Polyethylene Oxide and Silicon-Substituted Hydroxyapatite Composite: A Biomaterial for Hard Tissue Engineering in Orthopedic and Spine Surgery

1 Department of Mechanical Engineering, University College London, London, UK; Neuroscience Research Center, Faculty of Medicine, Lebanese University, Beirut, Lebanon
2 Neuroscience Research Center; Department of Neurosurgery, Faculty of Medicine, Lebanese University, Beirut, Lebanon; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
3 Neuroscience Research Center; Department of Neurosurgery, Faculty of Medicine, Lebanese University, Beirut, Lebanon

Correspondence Address:
Dr. Nael Berri
Neuroscience Research Center, Faculty of Medicine, Lebanese University, Beirut
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/abr.abr_206_17

Rights and Permissions

Background: Tissue engineering and biomaterials have made it possible to innovate bone treatments for orthopedic and spine problems. The aim of this study is to develop a novel polyethylene oxide (PEO)/silicon-substituted hydroxyapatite (Si-HA) composite to be used as a scaffold for hard tissue engineering in orthopedic and spine procedures. Materials and Methods: The composite was fabricated through the electrospinning technique. The applied voltage (5 kV) and PEO concentration (5%) were fixed. Processing parameters such as the flow rates (20 μl/min and 50 μl/min), distances from capillary tube to the collector (130 mm and 180 mm), spinning time (10 min and 20 min), and concentration of Si-HA (0.2% and 0.6%) were explored to find the optimum conditions to produce fine composite fibers. Results: Scanning electron microscope images showed that 5% PEO, 5% PEO/0.2% Si-HA, and 5% PEO/0.6% Si-HA fibers were successively produced. Flow rates and working distances showed significant influence on the morphology of the polymeric and composite fibers. A high flow rate (50 μl/min) and a larger working distance (180 mm) resulted in larger fibers. The comparison between the mean fiber diameter of 5% PEO/0.2% Si-HA and 5% PEO/0.6% Si-HA showed to be significantly different. As the Si-HA concentration increased, certain fibers were having particles of Si-HA that were not properly integrated into the polymer matrix. Conclusions: Synthesis of a novel biomaterial for hard tissue scaffold through electrospinning was successful. In general, PEO/Si-HA fibers produced have the desired characteristics to mimic the extracellular matrix of bone.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded142    
    Comments [Add]    
    Cited by others 2    

Recommend this journal