Users Online: 683
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 5  |  Issue : 1  |  Page : 22

The role of biodegradable engineered random polycaprolactone nanofiber scaffolds seeded with nestin-positive hair follicle stem cells for tissue engineering


1 Department of Anatomy, School of Medicine, Stem Cell Technology Research Centre; Department of Anatomy, School of Medicine, Alborz University of Medical Science, Karaj, Iran
2 Department of Medical Genetics, Stem Cell Technology Research Centre, Karaj, Iran
3 Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
4 Department of Anatomy, School of Medicine, Stem Cell Technology Research Centre, Karaj, Iran
5 Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Centre, Karaj, Iran
6 Department of Anatomy, School of Medicine, Stem Cell Technology Research Centre; Physiology Research Centre; Anti-microbial Resistance Research Centre, University of Medical Science Karaj, Iran

Correspondence Address:
Dr. Maliheh Nobakht
Department of Anatomy, School of Medicine, Iran University of Medical Science, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2277-9175.175911

Rights and Permissions

Background: Tissue engineering is a new approach to reconstruction and/or regeneration of lost or damaged tissue. The purpose of this study was to fabricate the polycaprolactone (PCL) random nanofiber scaffold as well as evaluation of the cell viability, adhesion, and proliferation of rat nestin-positive hair follicle stem cells (HFSCs) in the graft material using electrospun PCL nanofiber scaffold in regeneration medicine. Materials and Methods: The bulge HFSCs was isolated from rat whiskers and cultivated in Dulbecco's modified Eagle's medium/F12. To evaluate the biological nature of the bulge stem cells, flow cytometry using nestin, CD34 and K15 antibodies was performed. Electrospinning was used for the production of PCL nanofiber scaffolds. Furthermore, scanning electron microscopy (SEM) for HFSCs attachment, infiltration, and morphology, 3-(4, 5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay for cell viability and cytotoxicity, tensile strength of the scaffolds mesh, and histology analysis were used. Results: Flow cytometry showed that HFSCs were nestin and CD34 positive but K15 negative. The results of the MTT assay showed cell viability and cell proliferation of the HFSCs on PCL nanofiber scaffolds. SEM microscopy photographs indicated that HFSCs are attached and spread on PCL nanofiber scaffolds. Furthermore, tensile strength of the scaffolds mesh was measured. Conclusion: The results of this study revealed that modified PCL nanofiber scaffolds are suitable for HFSCs seeding, attachment, and proliferation. Furthermore, HFSCs are attached and proliferated on PCL nanofiber scaffolds.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1687    
    Printed17    
    Emailed0    
    PDF Downloaded324    
    Comments [Add]    
    Cited by others 5    

Recommend this journal