REVIEW ARTICLE |
|
Year : 2014 | Volume
: 3
| Issue : 1 | Page : 266 |
|
Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes
Shruti Dave
Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, Stem Cell Lab and Transplant Biology Research Centre, G. R. Doshi and K. M. Mehta Institute of Kidney Diseases and Research Centre-Dr. H. L. Trivedi Institute of Transplantation Sciences, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
Correspondence Address:
Shruti Dave Department of Pathology, Laboratory Medicine, Transfusion Services and Immunohematology, Stem Cell Lab and Transplant Biology Research Centre, G. R. Doshi and K.M. Mehta Institute of Kidney Diseases and Research Centre (IKDRC)- Dr. H. L. Trivedi Institute of Transplantation Sciences (ITS), Civil Hospital Campus, Asarwa, Ahmedabad - 380 016, Gujarat India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/2277-9175.148247
|
|
The pathophysiology of type 1 diabetes mellitus (T1DM) is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs) offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs) can be targeted. To date, the role of MSCs-derived IPC in T1DM-a unique approach with some positive findings-have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|