Users Online: 5705
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 1  |  Page : 39

The Effect of Pentoxifylline on Passive Avoidance Learning and Expression of Tumor Necrosis Factor-Alpha and Caspase-3 in the Rat Hippocampus Following Lipopolysaccharide-Induced Inflammation


1 Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine; International Campuses, Tehran University of Medical Sciences Tehran, Iran
2 Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

Correspondence Address:
Dr. Maryam Farahmandfar
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_33_19

Rights and Permissions

Background: Peripheral inflammation is effective in the development of neurodegenerative diseases. Pentoxifylline (PTX) has an inhibitory effect on inflammatory cytokines; therefore, we aimed to evaluate the effect of PTX on passive avoidance learning and the expression of tumor necrosis factor-alpha (TNF-α) and caspase-3 in the rat hippocampus, following systemic lipopolysaccharide (LPS) injection. Materials and Methods: Male Wistar rats were randomly divided into five groups: control, LPS, and LPS + PTX, receiving doses of 10, 25, and 50 mg/kg of PTX, respectively. The animals received daily injections of PTX (i.p.) 1 week before and 2 weeks after the LPS injection (5 mg/kg; i.p.). Learning and memory were evaluated by passive avoidance learning. Then, the expression of the associated genes was measured in the hippocampus. Results: The results showed that the peripheral LPS injection had no significant effect on learning and memory. PTX only with a dose of 10 mg/kg shows an improvement (P < 0.05). Results from reverse transcription polymerase chain reaction showed that LPS had no significant effect on the expression of caspase-3 and TNF-α. PTX with a dose of 10 mg/kg decreased the caspase-3 expression in the LPS + PTX group (P < 0.001), but the expression of both genes increased, using other concentrations. Conclusions: Findings showed that systemic application of LPS after 2 weeks had no effect on learning and memory and the expression of inflammatory genes in the hippocampus, but PTX led to an increase in the expression of these genes, which could be due to its direct effects or possible exacerbation of LPS effects.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed290    
    Printed40    
    Emailed0    
    PDF Downloaded71    
    Comments [Add]    

Recommend this journal