Users Online: 907
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 1  |  Page : 33

Targeting MCF-7 Cell Line by Listeriolysin O Pore Forming Toxin Fusion with AHNP Targeted Peptide


1 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan; Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
2 Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Medical Genetics, School of Medicine, Protein Engineering Laboratory, Shahidsadoughi University of Medical Sciences, Yazd, Iran
4 Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
5 Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran

Correspondence Address:
Dr. Majid Kheirollahi
Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_18_19

Rights and Permissions

Background: Tumor-targeting peptides are attracting subjects in cancer therapy. These peptides, which are widely studied, deliver therapeutic agents to the specific sites of tumors. In this study, we produced a new form of recombinant listeriolysin O (LLO) with genetically fused Anti-HER2/neu peptide (AHNP) sequence adding to its C-terminal end. The aim of the study was to engineer this pore-forming toxin to make it much more specific to tumor cells. Materials and Method and Results: Two forms of the toxin (with and without peptide) were subcloned into a bacterial expression plasmid. Subcloning was performed using a polymerase chain reaction (PCR) product as a megaprimer in a quick-change PCR to introduce the whole insert gene into the expression plasmid. After expression of two recombinant forms of LLO in BL21 DE3 cells, purification was performed using Ni-NTA affinity column. MDA-MB-231 and MCF-7 cell lines (as negative and positive controls, respectively) were treated with both LLO toxins to evaluate their cytotoxicity and specificity. The IC50 of LLO on MDA-MB-231 and MCF-7 cells was 21 and 5 ng/ml, respectively. In addition, IC50 for the fusion AHNP-LLO toxin was 140 and 60 ng/ml, respectively. It was found that the cytotoxicity of the new engineered AHNP-LLO toxin has decreased by about 9x compared to the wild-type toxin and the specificity of the AHNP-LLO toxin has been also reduced. Conclusions: Results show that the C-terminal of the LLO should not be modified and it seems that N-terminal of the toxin should be preferred for engineering and adding peptide modules.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed110    
    Printed2    
    Emailed0    
    PDF Downloaded29    
    Comments [Add]    

Recommend this journal