Users Online: 400
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 1  |  Page : 44

Poly(hydroxybutyrate)/chitosan Aligned Electrospun Scaffold as a Novel Substrate for Nerve Tissue Engineering


1 Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

Correspondence Address:
Dr. Saeed Karbasi
Department of Biomaterials and Tissue Engineering, School of Advance Technology in Medicine, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_277_16

Rights and Permissions

Background: Reconstruction of nervous system is a great challenge in the therapeutic medical field. Nerve tissue engineering is a novel method to regenerate nervous system in human health care. Tissue engineering has introduced novel approaches to promote and guide peripheral nerve regeneration using submicron and nanoscale fibrous scaffolds. Materials and Methods: In this study, 9 wt% poly(3-hydroxybutyrate) (PHB) solutions with two different ratios of chitosan (CTS) (15%, and 20%) were mixed in trifluoroacetic acid as a cosolvent. Thereafter, random and aligned PHB/CTS scaffolds were fabricated by electrospinning method in an appropriate condition. Results: Average diameters for aligned PHB, PHB/CTS 85:15 and PHB/CTS 80:20 were obtained as 675 nm, 740.3 nm, and 870.74 nm, which was lesser than random fibers. The solution components entity authenticity was approved by Fourier transform infrared. The addition of CTS decreased both water droplet contact angle from 124.79° to 43.14° in random and 110.87° to 33.49° in aligned PHB/CTS fibrous scaffold. Moreover, alignment of fibers causes tremendous increase in hydrophilicity of fibrous PHB/CTS substrate. Tensile strength increased from 6.41 MPa for random to 8.73 MPa for aligned PHB/CTS 85:15. Conclusions: Our results indicated that aligned PHB/CTS 85:15 nanofibers are the desired scaffold than the random PHB/CTS nanofibers for application in nerve tissue regeneration.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed504    
    Printed14    
    Emailed0    
    PDF Downloaded120    
    Comments [Add]    
    Cited by others 2    

Recommend this journal