Users Online: 373
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 1  |  Page : 121

Effects of Nigella sativa Extracts on the Lipid Profile and Uncoupling Protein-1 Gene Expression in Brown Adipose Tissue of Mice


1 Department of Biochemistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
2 Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
3 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Correspondence Address:
Dr. Keihan Ghatreh Samani
Clinical Biochemistry Research Center, Shahrekord University of Medical Sciences, Rahmatieh, Shahrekord
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_91_18

Rights and Permissions

Background: Uncoupling protein-1 (UCP-1) is the index protein of the brown adipose tissue (BAT), used in the obesity studies. We evaluated the effects of thymoquinone (TQ), hydroalcoholic, and hexane extracts of Nigella sativa, on the UCP-1 gene expression in BAT, and also on the recovery from oxidative stress, due to a high-fat diet. Materials and Methods: Fifty mice were divided into five groups: the first group was fed with a usual diet and the second, third, fourth, and fifth groups with a high-fat diet, hydroalcoholic extract, hexane extract, and TQ, respectively. After completing the course, the lipid profile, paraoxonase 1 (PON1), serum total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. UCP-1 expression in BAT was evaluated at the gene and protein level. Results: The weight of mice, receiving TQ, hydroalcoholic, and hexane extracts, was decreased (P < 0.05), compared to the second group (P < 0.05). MDA was increased in the second group, compared to the first group (P < 0.05); however, TAC, liver catalase enzyme, and PON1 were decreased (P < 0.05). Furthermore, MDA of the third, fourth, and fifth groups had decreased, and the activity of PON1, liver catalase enzyme, and the amount of TAC was increased (P < 0.05). UCP-1 expression of the third and fourth groups was increased, compared to the second group (P < 0.05). Conclusion: The results suggest that TQ, hydroalcoholic, and hexane extracts of N. sativa have a protective and therapeutic role in the oxidative stress, caused by high-fat diets. The hydroalcoholic and hexane extracts can induce weight loss, by positively affecting UCP-1, at the gene and protein level.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed259    
    Printed11    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    
    Cited by others 1    

Recommend this journal