Users Online: 666
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 7  |  Issue : 1  |  Page : 109

Solubility Enhancement of Domperidone by Solvent Change In situ Micronization Technique


Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Prof. Jaleh Varshosaz
Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Hezar Jarib Avenue, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/abr.abr_219_17

Rights and Permissions

Background: Domperidone (DOM), a dopamine receptor antagonist, is used as antiemetic for the treatment of gastroparesis, vomiting, and nausea. The low water solubility of DOM leads to a low dissolution rate and variable bioavailability. The aim of this study was to enhance the solubility of DOM by the preparation of micron-sized particles. Materials and Methods: The in situ micronization process was carried out using solvent change method in the presence of Soluplus® or PEG6000as stabilizing agents. DOM was dissolved in appropriate solvent (acetone and methanol 1:1 v/v), and the stabilizing agent was dissolved in water (as nonsolvent). The nonsolvent was poured rapidly into the drug solution under stirring by a homogenizer, and the resultant was freeze dried. The crystalline shape and particle size of DOM and interaction of DOM with stabilizers were investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and then, dissolution test was carried out. Results: Optimum formulation was composed of DOM (0.5%) and PEG6000 (0.1%) with the lowest particle size (3 μm) and the highest DE60%(95.95%) as compared to pure DOM (particle size of 13.4 μm and DE60%52.18%). Conclusion: SEM micrographs showed uniform and spherical shape of microcrystals. FTIR, XRD, and DSC studies indicated the micron size of the microcrystals and no interference between the drug and the stabilizer.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed350    
    Printed11    
    Emailed0    
    PDF Downloaded84    
    Comments [Add]    

Recommend this journal