Users Online: 654
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 6  |  Issue : 1  |  Page : 155

A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease

1 Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Hossein Khanahmad
Department of Genetic and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2277-9175.219420

Rights and Permissions

Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. Materials and Methods: At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. Results: The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) (P < 0.0001). Conclusion: According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded152    
    Comments [Add]    
    Cited by others 1    

Recommend this journal