Users Online: 2169
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 6  |  Issue : 1  |  Page : 117

Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

1 Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan, Iran

Correspondence Address:
Daryoush Shahbazi-Gahrouei
Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/abr.abr_268_16

Rights and Permissions

Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose verification phantom, Farmer ionization chambers, and PC-electrometer (Sun Nuclear, USA) as a reference class electrometer was employed throughout the audit in linear accelerators 6 and 18 MV energies (Siemens ONCOR Impression Plus, Germany). Seven test cases were performed using semi CIRS phantom. Results: In homogeneous regions and simple plans for both energies, there was a good agreement between measured and treatment planning system calculated dose. Their relative error was found to be between 0.8% and 3% which is acceptable for audit, but in nonhomogeneous organs, such as lung, a few errors were observed. In complex treatment plans, when wedge or shield in the way of energy is used, the error was in the accepted criteria. In complex beam plans, the difference between measured and calculated dose was found to be 2%–3%. All differences were obtained between 0.4% and 1%. Conclusions: A good consistency was observed for the same type of energy in the homogeneous and nonhomogeneous phantom for the three-dimensional conformal field with a wedge, shield, asymmetric using the TiGRT treatment planning software in studied center. The results revealed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy was globally within acceptable standards with no major causes for concern.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded100    
    Comments [Add]    
    Cited by others 1    

Recommend this journal