Users Online: 410
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 4  |  Issue : 1  |  Page : 202

The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide


1 Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
3 Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5 Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
6 Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence Address:
Mahmoud Hosseini
Department of Physiology, Neurogenic Inflammation Research Center, School of Medicine, Azadi Square, Mashhad
Iran
Login to access the Email id

Source of Support: Nil., Conflict of Interest: There are no conflicts of interest.


DOI: 10.4103/2277-9175.166138

Rights and Permissions

Background: An important role of nitric oxide (NO) in neuroinflammation has been suggested. It is also suggested that NO has a critical role in learning and memory. Neuro-inflammation induced by lipopolysaccharide (LPS) has been reported that deteriorates learning and memory. The effect of L-arginine (LA) as a precursor of NO on LPS-induced spatial learning and memory and neuronal plasticity impairment was evaluated. Materials and Methods: The animals were grouped into: (1) Control, (2) LPS, (3) LA-LPS, and (4) LA. The rats received intraperitoneally LPS (1 mg/kg) 2 h before experiments and LA (200 mg/kg) 30 min before LPS. The animals were examined in Morris water maze (MWM). Long-term potentiation (LTP) from CA1area of the hippocampus was also assessed by 100 Hz stimulation in the ipsilateral Schaffer collateral pathway. Results: In MWM, time latency and traveled path were higher in LPS group than the control group (P < 0.001) whereas in LA-LPS group they were shorter than LPS group (P < 0.001). The amplitude and slope of field excitatory postsynaptic potential (fEPSP) decreased in LPS group compared to control group (P < 0.05 andP < 0.01) whereas, there was not any significant difference in these parameters between LPS and LA-LPS groups. Conclusion: Administration of LPS impaired spatial memory and synaptic plasticity. Although LA ameliorated deleterious effects of LPS on learning of spatial tasks, it could not restore LPS-induced LTP impairment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed730    
    Printed11    
    Emailed0    
    PDF Downloaded153    
    Comments [Add]    

Recommend this journal