Users Online: 614
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 


 
Previous article Browse articles Next article 
ORIGINAL ARTICLE
Adv Biomed Res 2015,  4:125

The effect of cyclic nucleotide analog drugs on the mediators release from basophils


1 Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Razi Karaj Institute, Karaj, Iran
3 Department of Immunology, Cellular and Molecular Immunology Research Center, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Respiratory Medicine, University of Sheffield, United Kingdom

Date of Submission13-Mar-2014
Date of Acceptance12-May-2014
Date of Web Publication04-Jun-2015

Correspondence Address:
Nahid Eskandari
Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2277-9175.158040

Rights and Permissions
  Abstract 

Background: The cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are intracellular second messengers that play an important role in modulating inflammatory cells involved in allergic diseases. In general, cAMP suppresses the activity of immune and inflammatory cells. We aim to evaluate the roles of cAMP and cGMP in regulating basophil activity.
Materials and Methods: Basophil-enriched preparations were incubated with analogs and then challenged with anti-IgE or IL-3 (4 or 24 hours). Supernatants were assayed for histamine, IL-4, and IL-13 release. The effects of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS on IL-3-dependent mediator release from basophils were determined. The cells were pre-incubated with an analog and then incubated with IL-3 for 24 hours.
Results: Sp-8-CPT-cAMPS was an effective (P < 0.05) inhibitor of IL-4, IL-13, and histamine release from basophils. However, paradoxically, Sp-8-CPT-cGMPS enhanced histamine release and IL-13 generation, but by contrast, had little effect on IL-4 generation. Sp-8-CPT-cGMPS inhibited cytokine generation, but enhanced the release of histamine release to a modest extent.
Conclusion: This study shows that the cAMP/protein kinase A (PKA) pathway may be inhibitory to the IgE- and non-IgE-dependent release of mediators from basophils.

Keywords: Allergy, basophils, cytokine, drug


How to cite this article:
Eskandari N, Bastan R, Esfahani S, Peachell PT. The effect of cyclic nucleotide analog drugs on the mediators release from basophils. Adv Biomed Res 2015;4:125

How to cite this URL:
Eskandari N, Bastan R, Esfahani S, Peachell PT. The effect of cyclic nucleotide analog drugs on the mediators release from basophils. Adv Biomed Res [serial online] 2015 [cited 2020 Feb 17];4:125. Available from: http://www.advbiores.net/text.asp?2015/4/1/125/158040


  Introduction Top


The cyclic nucleotides cAMP and cGMP are intracellular second messengers that play an important role in modulating inflammatory cells involved in allergic diseases. [1],[2],[3],[4],[5] Alteration in the levels of intracellular cAMP and cGMP can cause a wide range of functional effects in cells, from changes in the rates of ion entry to gene transcription. [6],[7],[8],[9],[10],[11] cAMP suppresses the activity of immune and inflammatory cells such as basophils. Our laboratory has shown that agents that elevate and sustain increases in cAMP levels, inhibit IgE-triggered histamine release from basophils. [12] Adenylate cyclase, which is activated by G-proteins, generates increased levels of cAMP in intact cells or tissues. [13] By contrast, guanylate cyclase is activated by nitric oxide and guanylate cyclase - linked receptors that mediate the actions of certain peptides such as natriuretic peptides, which cause cGMP accumulation in cells. [14],[15],[16]

As cAMP and cGMP are considered to be impermeable to the cell membrane, due to the polar nature of the phosphate group, structural modifications are used to make the compounds more cell-permeant. Analogs with hydrophobic substitutions (e.g., Bu 2 -cAMP, 8-Br-cAMP) and phosphorothioate modification (Sp-8-CPT-cAMPS) are generated. These analogs are more lipophilic, hence, more membrane permeable and show reduced susceptibility to hydrolysis by phosphodiesterases (PDEs). [17] In the present study, we have investigated and compared the effects of several analogs of cAMP and cGMP on histamine and cytokine release from basophils stimulated by IgE-dependent or IgE-independent mechanisms. The novelty of this study is to try to evaluate the role of the cAMP/PKA pathway, if any, in modulating human basophil activity in allergic diseases.


  Materials and methods Top


Basophil isolation

Basophil-enriched preparations were isolated from whole fresh blood of healthy individuals (50-100 ml of venous blood was anti-coagulated with 5-10 ml of 0.1 M Ethylenediaminetetraacetic acid (EDTA)). Briefly, whole venous blood was layered over a two-step discontinuous Percoll gradient consisting of 15 ml of 62% Percoll overlaid with 15 ml of 53% Percoll and a basophil-rich layer (10-15% purity) was harvested. The cells were then washed once in 1 x PIPES (piperazine-N,N′-bis(2-ethanesulfonic acid), twice in Phosphate Buffered Saline (PBS) - EDTA and counted with Alcian Blue. The enriched-basophils were used in experiments investigating the release of histamine, IL-4, and IL-13.

Mediator release

The release of histamine, IL-4, and IL-13 was assessed from the basophil-enriched preparations activated with either anti-human IgE or IL-3. The effects of a Zaprinast inhibitor on the generation of these mediators were also determined. Mediator-release experiments were performed in the Roswell Park Memorial Institute RPMI buffer supplemented with bovine serum albumin (BSA), gentamicin, and calcium chloride. Typically, the basophils (80,000-300,000 basophils per sample) were incubated (30 minutes) with an inhibitor or buffer, before challenge with a stimulus. Cells incubated in buffer alone served as measures of spontaneous mediator release, and all values cited for stimulus-induced mediator generation were corrected by subtracting this spontaneous mediator release. In experiments monitoring IL-4 generation, the basophils were activated for four hours with an optimal releasing concentration of anti-IgE (1/100,000), and in monitoring IL-13 generation, the basophils were activated for 24 hours. These conditions for optimal production of IL-4 and IL-13 generation have been reported by others [18],[19] and have been confirmed by us in a series of preliminary experiments. After activation, the cells were centrifuged and the supernatants analyzed for mediator release. The histamine content was analyzed using a modification of the automated fluorometric technique. Also the supernatant was assayed for IL-4 and IL-13 content by the enzyme-linked immunosorbent assay (ELISA). The limit of sensitivity was 0.2 and 0.5 pg/ml for the IL-4 and IL-13 assays, respectively. The Optical Density (OD) of the samples was measured at 450 nM using a Dynatech plate reader.

Materials

The following were purchased from the sources indicated; 8-bromo-cAMP, 8-bromo-cGMP, Dimethyl sulfoxide (DMSO), goat anti-human IgE, PIPES (free acid), Percoll, BSA, zaprinast (Sigma, Poole, U.K.);gentamicin, and RPMI 1640 (Gibco BRL, Dundee, U.K.); IL-3 (Peprotech, Rocky Hill, NJ, U.S.A.); Sp-8- CPT-cAMPS and Sp-8-CPT-cGMPS (Biolog Life Science Institute, Bremen, Germany); and ELISA kits for human IL-4 and IL-13 (Mast Diagnostics, Amsterdam, Netherlands).

Data analysis

Data were expressed as means ± S.E.M. EC50 values were determined using GraphPad Prism software (version 3). In order to establish whether drug treatments caused statistically significant effects, either paired t-tests or ANOVA, followed by the Dunnett test, were performed.


  Results Top


Effects of cAMP and cGMP analogs on histamine release from basophils

To investigate the role of cAMP and cGMP in human basophils, a number of structurally distinct analogs of cAMP and cGMP were investigated for the inhibitory effects on histamine release induced by anti-IgE.

The effects of Bu 2 -cAMP and Bu 2 -cGMP on IgE-mediated histamine release from basophils were assessed. The cells were pre-treated for 30 minutes in the presence of increasing concentrations (3 × 10−5 − 3 × 10−3 M) of both nucleotide analogs. Then the cells were triggered with an optimal releasing concentration of anti-IgE (1/3000) for a further 45 minutes for the release of histamine. The data show [Figure 1] that Bu 2 -cAMP inhibits histamine release in a dose-dependent manner with maximal inhibition of 80 ± 7% at 3 mM and an EC 50 of about 1 mM. By contrast, Bu 2 -cGMP was ineffective in inhibiting histamine release.
Figure 1: Effects of Bu2-cAMP (?#163;) and Bu2-cGMP (?#161;) on histamine release from human basophils. Results are the percent inhibition of the control histamine release, which was 48 ± 4%. Values are means ± S.E.M, n = 4. Asterisks denote statistically signifi cant levels of inhibition; **P < 0.01,*P < 0.05

Click here to view


The effects of Bu 2 -cAMP, Bu 2 -cGMP, 8-Br-cAMP, 8-Br-cGMP, Sp-8-CPT-cAMPS, and Sp-8-CPT-cGMPS (1 mM) on IgE-mediated histamine release from basophils were investigated [Figure 2]. Both Bu 2 -cAMP and Sp-8-CPT-cAMPS were very effective (P < 0.01) inhibitors of histamine release, whereas, 8-Br-cAMP was relatively ineffective. None of the cGMP analogs, Bu 2 -cGMP, 8-Br-cGMP or Sp-8-CPT-cGMPS, were effective inhibitors of histamine release.
Figure 2: Effect of different cyclic nucleotide analogs on histamine release from basophils. Results are expressed as the percent inhibition of control histamine release, which was 34 ± 7%. Values are means ± S.E.M., n = 4. Asterisks denote statistically signifi cant levels of inhibition; **P < 0.01

Click here to view


Effects of cAMP and cGMP analogs on cytokine generation from basophils

We examined the effects of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS (1 mM) on the generation of IL-4 and IL-13, as well as histamine, from basophils activated with anti-IgE. Basophil-enriched preparations were incubated for 30 minutes with analogs and then challenged with anti-IgE for 24 hours [Figure 3]. The data showed that Sp-8-CPT-cAMPS was an effective (P < 0.05) inhibitor of IL-4, IL-13, and histamine release from basophils. However, paradoxically, Sp-8-CPT-cGMPS enhanced histamine release and IL-13 generation, but by contrast, had little effect on IL-4 generation.
Figure 3: Effect of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS analogs on IgE-dependent histamine (a), IL-4 (b), and IL-13 (c) release from human basophils. Results are expressed as the percent inhibition of control releases, which were 18 ± 3% histamine release, 8.5 ± 1 pg IL-4 per 106 basophils, and 39 ± 17 pg IL-13 per 106 basophils, respectively. Values are means ± S.E.M., n = 4-6. Asterisks denote statistically significant (P < 0.05) changes. Compared to control values; *P < 0.05. NS, not signifi cant

Click here to view


Subsequently, the effects of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS on IL-3-dependent mediator release from basophils were determined. The cells were pre-incubated for 30 minutes with an analog (1 mM) and then incubated with IL-3 (100 ng/ml) for 24 hours. Sp-8-CPT-cAMPS was effective (at least P < 0.05) at inhibiting histamine release, IL-4, and IL-13 generation from basophils. Sp-8-CPT-cGMPS inhibited cytokine generation, but enhanced the release of histamine release to a modest extent [Figure 4].
Figure 4: Effect of Sp-8-CPT-cAMPS and Sp-8-CPT-cGMPS analogs on IL-3-dependent histamine (a), IL-4 (b), and IL-13 (c) release from human basophils. Results are expressed as the percent inhibition of control releases, which were 15 ± 5% histamine release, 15 ± 7 pg IL-4 per 106 basophils, and 300 ± 84 pg IL-13 per 106 basophils. Values are means ± S.E.M., n = 4-6. Asterisks denote statistically signifi cant (P < 0.05) changes. Compared to control; *P < 0.05, **P < 0.01

Click here to view


Effect of zaprinast on mediator release from basophils

To investigate the role of cGMP further, the effect of a zaprinast was assessed. The basophils were pretreated for 15 minutes with zaprinast (10 μM) and then challenged with anti-IgE for a further four hours (IL-4, histamine) or 24 hours (IL-13, histamine) [Table 1]. The results showed that zaprinast had little effect (P > 0.05) on histamine release or cytokine generation. The effects of zaprinast on histamine and cytokine generation induced by IL-3 (100 ng/ml) were examined [Table 2]. The basophils were incubated for 15 minutes with zaprinast (10 μM) and then further incubated with IL-3 for 24 hours. Zaprinast had no significant effect (P > 0.05) on mediator release from basophils.
Table 1: Effect of the cGMP-specifi c PDE (PDE5) inhibitor, zaprinast, on the generation of histamine (a: 4h, b: 24h incubation), IL-13, and IL-4 from basophils activated with anti-IgE

Click here to view
Table 2: Effect of the cGMP-specifi c PDE (PDE5) inhibitor, zaprinast, on the generation of histamine, IL-13 and IL-4 from basophils activated with IL-3

Click here to view


Previous studies have shown that sodium nitroprusside elevates cGMP and activates protein kinase G (PKG) through activation of guanylate cyclase. [20],[21],[22],[23] The cells were incubated with increasing concentrations of this compound (10−7 -10−3 M) for 30 minutes, before challenge with anti-IgE (data not shown). Sodium nitroprusside had no effect on histamine release except at the highest concentration used.


  Discussion Top


A number of analogs of cAMP and cGMP were studied for effects on the IgE-mediated release of histamine. [24] Bu 2 -cAMP was an effective inhibitor of histamine release, but 8-Br-cAMP was ineffective. However, 8-Br-cAMP, although recognized as a superior probe to Bu 2 -cAMP in terms of specificity and resistance to hydrolysis, was found to be less permeable to the cell membrane than Bu 2 -cAMP. [17] The inhibitory effects seen with Bu 2 -cAMP, however, might not be due to the activation of PKA by Bu 2 -cAMP, as it is known that Bu 2 -cAMP could be converted intracellularly to butyrate and it was possible that butyrate was responsible for the inhibitory effects. [25],[26],[27],[28] However, an alternative, highly lipophilic and nonhydrolyzable analog, Sp-8-CPT-cAMPS, [17],[29] was a very effective inhibitor of stimulated histamine release from basophils. In contrast to these cAMP analogs, none of the cGMP analogs studied had any effect on the release of histamine induced by anti-IgE, arguing against a role for cGMP in the regulation of histamine release.

In further experiments to analyze the role of cAMP and cGMP analogs on cytokine generation, experiments with Sp-8-CPT-cAMPS, indicated that this analog was an effective inhibitor of cytokine generation from basophils activated by IL-3 or anti-IgE. This suggested that targeting the cAMP/PKA pathway was effective in attenuating the generation of cytokines and histamine release from basophils. However, in contrast to Sp-8-CPT-cAMP, Sp-8-CPT-cGMP enhanced IgE-mediated histamine release and IL-13 generation, but had no significant effect on IL-4 generation. On the other hand, when IL-3 was used as the stimulus, cytokine generation was effectively inhibited by Sp-8-CPT-cGMPS, whereas, no inhibition of histamine release from basophils was observed. These conflicting findings make it difficult to determine the role of cGMP in basophils. It is possible that Sp-8-CPT-cGMPS interferes with different pathways when different stimuli are used to activate basophils to modulate histamine and cytokine generation. Sp-8-CPT-cGMPS is considered as a superior nucleotide analog in terms of PDE resistance and lipophilicity, but it is not selective for PKG activation. [30],[31] This suggests that the varied effects seen with Sp-8-CPT-cGMP in basophils are not necessarily mediated exclusively through the cGMP/PKG pathway. In addition, we found that zaprinast had no significant effect on mediator release induced by anti-IgE or IL-3. These findings with zaprinast do not support a role for cGMP in the regulation of basophil activity.

Sodium nitroprusside is known to activate gluanylate cyclase and this leads to elevations in cGMP levels. [32],[33] In agreement with other data, [34],[35],[36] it has been found that sodium nitroprusside has no effect on histamine release except at a high concentration. Although these data suggest an inhibitory role for cGMP in basophils, a more complete assessment of the effects of nitroprusside on cytokine generation induced by anti-IgE or IL-3 would provide a clearer indication of the role of cGMP in basophils.

We conclude that the cAMP/PKA pathway is inhibitory to the IgE and non-IgE-dependent release of mediators from basophils. By contrast, the role, if any, of the cGMP / PKG pathway in modulating basophil activity is uncertain.

 
  References Top

1.
Conolly ME. Cyclic nucleotides, beta receptors, and bronchial asthma. Adv Cyclic Nucleotide Res 1980;12:151-9.  Back to cited text no. 1
    
2.
Barnes PJ. Cyclic nucleotides and phosphodiesterases and airway function. Eur Respir J 1995;8:457-62.  Back to cited text no. 2
    
3.
Aleksijevic A, Lang JM, Giron C, Stoclet JC, Mayer S, Oberling F. Alterations of peripheral blood lymphocyte cyclic AMP and cyclic GMP in untreated patients with hodgkin's disease. Clin Immunol Immunopathol 1983;26:398-405.  Back to cited text no. 3
    
4.
Zhikharev SS, Mineev VN. Characteristics of cyclic nucleotide metabolism in the leukocytes of patients with bronchial asthma. Ter Arkh 1980;52:89-93.  Back to cited text no. 4
    
5.
He L, Li TP, Zhu LH. Alveolar fluid clearance and changes of alveolar type II cell cAMP and cGMP levels in rats with oleic acid-induced acute respiratory distress syndrome. Nan Fang Yi Ke Da Xue Xue Bao 2008;28:513-6.  Back to cited text no. 5
    
6.
DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991;351:145-7.  Back to cited text no. 6
    
7.
Brunet LJ, Gold GH, Ngai J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 1996;17:681-93.  Back to cited text no. 7
    
8.
Collins SP, Uhler MD. Cyclic AMP - and cyclic GMP-dependent protein kinases differ in their regulation of cyclic AMP response element-dependent gene transcription. J Biol Chem 1999;274:8391-404.  Back to cited text no. 8
    
9.
Shaywitz AJ, Greenberg ME. CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999;68:821-61.  Back to cited text no. 9
    
10.
Ianculescu I, Wu DY, Siegmund KD, Stallcup MR. Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J Biol Chem 2012;287:4000-13.  Back to cited text no. 10
    
11.
Zuloaga R, Fuentes EN, Molina A, Valdes JA. The cAMP response element binding protein (CREB) is activated by insulin-like growth factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast. Biochem Biophys Res Commun 2013;440:258-64.  Back to cited text no. 11
    
12.
Peachell PT, MacGlashan DW Jr., Lichtenstein LM, Schleimer RP. Regulation of human basophil and lung mast cell function by cyclic adenosine monophosphate. J Immunol 1988;140:571-9.  Back to cited text no. 12
    
13.
Selwa E, Laine E, Malliavin TE. Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 2012;80:1028-40.  Back to cited text no. 13
    
14.
Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system: Regulation and mechanism of action. Biochim Biophys Acta 1993;1178:153-75.  Back to cited text no. 14
    
15.
Murad F. Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system. Adv Pharmacol 1994;26:19-33.  Back to cited text no. 15
    
16.
Murad F. The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Recent Prog Horm Res 1994;49:239-48.  Back to cited text no. 16
    
17.
Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000;87:199-226.  Back to cited text no. 17
    
18.
MacGlashan D Jr. Signal transduction: Mechanisms in basophils. J Allergy Clin Immunol 1994;94:1146-51.  Back to cited text no. 18
    
19.
Cheng KN, Redrup MJ, Barrow A, Williams PN. Validation of a liquid chromatographic tandem mass spectrometric method for the determination of sumatriptan in human biological fluids. J Pharm Biomed Anal 1998;17:399-408.  Back to cited text no. 19
    
20.
Katsuki S, Arnold WP, Murad F. Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res 1977;3:239-47.  Back to cited text no. 20
    
21.
Arnold WP, Mittal CK, Katsuki S, Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3': 5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977;74:3203-7.  Back to cited text no. 21
    
22.
Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins. FASEB J 1993;7:328-38.  Back to cited text no. 22
    
23.
Tsuchida S, Sudo M, Muramatsu I. Stimulatory and inhibitory effects of sodium nitroprusside on soluble guanylate cyclase. Life Sci 1996;58:829-32.  Back to cited text no. 23
    
24.
Yao M, Roberts DD, Isenberg JS. Thrombospondin-1 inhibition of vascular smooth muscle cell responses occurs via modulation of both cAMP and cGMP. Pharmacol Res 2011;63:13-22.  Back to cited text no. 24
    
25.
Conley BA, Egorin MJ, Tait N, Rosen DM, Sausville EA, Dover G, et al. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin Cancer Res 1998;4:629-34.  Back to cited text no. 25
    
26.
Joshi SS, Sinangil F, Sharp JG, Mathews NB, Volsky DJ, Brunson KW. Effects of differentiation inducing chemicals on in vivo malignancy and NK susceptibility of metastatic lymphoma cells. Cancer Detect Prev 1988;11:405-17.  Back to cited text no. 26
    
27.
Hutt-Taylor SR, Harnish D, Richardson M, Ishizaka T, Denburg JA. Sodium butyrate and a T lymphocyte cell line-derived differentiation factor induce basophilic differentiation of the human promyelocytic leukemia cell line HL-60. Blood 1988;71:209-15.  Back to cited text no. 27
    
28.
Kawamoto T, Gohda E, Iji H, Fujiwara M, Yamamoto I. SKW 6.4 cell differentiation induced by interleukin 6 is stimulated by butyrate. Immunopharmacology 1998;40:119-30.  Back to cited text no. 28
    
29.
Spicuzza L, Belvisi MG, Birrell MA, Barnes PJ, Hele DJ, Giembycz MA. Evidence that the anti-spasmogenic effect of the beta-adrenoceptor agonist, isoprenaline, on guinea-pig trachealis is not mediated by cyclic AMP-dependent protein kinase. Br J Pharmacol 2001;133:1201-12.  Back to cited text no. 29
    
30.
Butt E, Eigenthaler M, Genieser HG. (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol 1994;269:265-8.  Back to cited text no. 30
    
31.
Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 1995;270:27380-8.  Back to cited text no. 31
    
32.
Siednienko J, Nowak J, Moynagh PN, Gorczyca WA. Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-kB activity. Cytokine 2011;54:282-8.  Back to cited text no. 32
    
33.
Szadujkis-Szadurska K, Grzesk G, Szadujkis-Szadurski L, Gajdus M, Matusiak G. Role of nitric oxide and cGMP in the modulation of vascular contraction induced by angiotensin II and Bay K8644 during ischemia/reperfusion. Exp Ther Med 2013;5:616-20.  Back to cited text no. 33
    
34.
Peh KH, Moulson A, Wan BY, Assem EK, Pearce FL. Role of nitric oxide in histamine release from human basophils and rat peritoneal mast cells. Eur J Pharmacol 2001;425:229-38.  Back to cited text no. 34
    
35.
Wan BY, Peh KH, Ho M, Assem ES. Effects of nitric oxide and hydrogen peroxide on histamine release from RBL-2H3 cells. Biochem Pharmacol 2001;62:1537-44.  Back to cited text no. 35
    
36.
Evilevitch V, Norrgren K, Greiff L, Wollmer P. Modulation of the inflammatory response to histamine by terbutaline and sodium nitroprusside in guinea-pig skin. Clin Physiol Funct Imaging 2005;25:340-3.  Back to cited text no. 36
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Previous article  Next article
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and me...
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed789    
    Printed15    
    Emailed0    
    PDF Downloaded123    
    Comments [Add]    

Recommend this journal