Users Online: 1655
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 


 
Previous article Browse articles Next article 
ORIGINAL ARTICLE
Adv Biomed Res 2015,  4:121

Expression of prostaglandin I2 (prostacyclin) receptor in blood of migraine patients: A potential biomarker


1 Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran

Date of Submission28-Oct-2014
Date of Acceptance18-Jan-2015
Date of Web Publication04-Jun-2015

Correspondence Address:
Majid Kheirollahi
Department of Genetics and Molecular Biology, Pediatric Inherited Diseases Research Center, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan
Iran
Login to access the Email id

Source of Support: This study was supported by Isfahan University of Medical Sciences, Isfahan, Iran, Conflict of Interest: None


DOI: 10.4103/2277-9175.158030

Rights and Permissions
  Abstract 

Background: Migraine is the most common chronic neurological disorders that may be associated with vasodilatation. According to the role of prostaglandin I2 (prostacyclin) receptor (PTGIR) in migraine as a receptor, which acts in vasodilatation, we decided to study the changes of PTGIR expression in migraine patients in relation to a suitable control group.
Materials and Methods: Extracted mRNA from lymphocytes of 50 cases and 50 controls was used to synthesize cDNA. Real-time polymerase chain reaction was performed, and the data were analyzed. Our results show that PTGIR mRNA expression in cases was significantly higher than the control group (P = 0.010).
Results: In conclusion, mRNA expression of PTGIR in the blood of people with migraines could be considered as a biomarker.
Conclusion: In addition, repression of PTGIR gene expression by methods such as using siRNA is probably suitable for therapy of migraine patients.

Keywords: Biomarker, expression, migraine, prostaglandin I2, receptor


How to cite this article:
Kheirollahi M, Kazemi M, Amini G, Khorvash F, Ahangari F, Kolahdouz M, Koulivand L. Expression of prostaglandin I2 (prostacyclin) receptor in blood of migraine patients: A potential biomarker. Adv Biomed Res 2015;4:121

How to cite this URL:
Kheirollahi M, Kazemi M, Amini G, Khorvash F, Ahangari F, Kolahdouz M, Koulivand L. Expression of prostaglandin I2 (prostacyclin) receptor in blood of migraine patients: A potential biomarker. Adv Biomed Res [serial online] 2015 [cited 2020 Jun 1];4:121. Available from: http://www.advbiores.net/text.asp?2015/4/1/121/158030


  Introduction Top


Migraine is the most common chronic neurological disorders, which affects over 15% of populations. Patients show moderate to severe headaches often associated with autonomic nervous system. Some other symptoms include nausea, vomiting, photophobia, phonophobia and generally the pain is worse with physical activity. [1],[2] Migraines are believed to be related to a mixture of environmental and genetic factors. However, the underlying causes of migraines are not identified. [3]

The Pathophysiology of migraine show that is a neurovascular disorder. [4] Furthermore, some evidences showing its mechanism begins within the brain and then spreading to the blood vessels and, therefore, neuronal mechanisms play a greater role while other researchers believe that blood vessels play the main role. Others believe that probably both are important. [5],[6],[7]

Prostaglandin I2 (prostacyclin) (PGI2) is an eicosanoid molecule of the cyclooxygenase pathway, which inhibits the formation of the platelet plug involved in primary hemostasis as a part of the blood clot formation. It is also an important and effective vasodilator. [8],[9] PGI2 binds to platelet Gs protein-coupled receptor (prostacyclin receptor) and activates it. This activation leads to the production of cAMP, which goes on to activate protein kinase A (PKA). Followed by a cascade of activity; PKA dephosphorylates the myosin light chain and inhibits myosin light-chain kinase. This will eventually lead to vasodilatation. [10],[11],[12]

Therefore, since these receptors are as a part of vasodilator factors during the disease attacks, probably play an important role in the mechanism of this disease. In migraine, a common disorder in these receptors exists and since prostaglandin I2 (prostacyclin) receptor (PTGIR) is also present on the lymphocyte membrane, it is expected that these changes are also seen in lymphocytes. In studies that have been done so far about the receptor of PGI2 in migraine, the effect of inhibitors has been noticed. [13],[14]

According to what was mentioned and because of the role of PTGIR in migraine, we decided to study the changes of expression in migraine patients in relation to a suitable controls group to find any significance changes in expression.


  Materials and methods Top


Patients and samples

Our sample consisted of 50 patients affected with migraine from the local hospitals in Isfahan province (Khorshid Hospital). All the patients were diagnosed as migraine, using the classification of all headaches, including migraines, is organized by the International Headache Society, and published in the International Classification of Headache Disorders (ICHD). The current version, the ICHD-2, was published in 2004. [1] Following the referral of patients to a neurologist and final diagnosis of patients with clinical and para-clinical examinations, the ethical consent was obtained from patients. The migraine patients did not take an antipsychotic medicine when we took blood samples and the minimum washout was 3 weeks.

The controls group included 50 unrelated individuals without any neurological disorders. They were matched for age and gender with the patient group. General physical and neurological examinations, neuropsychological evaluations were conducted to confirm the accuracy of the clinical diagnosis. Some general data such as date of birth, the date of diagnosis, occupation, and geographical region were also obtained. Peripheral blood was obtained from the patients and controls group.

RNA extraction and cDNA synthesis

Lymphocyte cells were isolated from ethylenediaminetetraacetic acid-blood using density-gradient centrifugation (Ficoll-Paque, Sigma, Germany, 100 ml, CN: 17-440-02) and then washed twice with phosphate-buffered saline (Gibco-BRL, Thermo Fisher Scientific Inc., Denmark, 100 ml, CN: 14190-086). TRIZOL (TRIzol® RNA Isolation Reagents, Invitrogen, Life Technologies Corporation, USA, 100 ml, CN: 15596-026) was used for RNA extraction from the isolated lymphocyte cells according to the standard protocols of the manufacturer. For each sample, RNA concentration was determined by spectrophotometer and stored at −80°C. Generally, 260/280 ratio for samples was >1.8. Then, cDNA synthesis kit (RevertAid First Strand cDNA Synthesis Kit, Thermo Scientific, CN. K1622) was used to synthesize cDNA by oligo dT primer (RevertAid First Strand cDNA Synthesis Kit, Thermo Fisher Scientific Inc., Denmark, CN. K1622) from the extracted RNA of samples according to standard protocol of the manufacturer.

Primers and real-time polymerase chain reaction procedure

Primers were designed using Allele ID version 7.6. Primers were synthesized by and purchased from Bioneer (in South Korea). According to the cDNA sequence (Gene bank), the sequences of the primers used for real-time polymerase chain reaction (RT-PCR) of PTGIR mRNA were as follows: Forward primer, 5'- CCT GCC TCT CAC GAT CCG-3' and reverse primer, 5'- AAG GCG TAG AAG CGG AAG-3'. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) selected as house-keeping gene in our assays. The primers sequences were as follows: Forward primer, 5'- AAG CTC ATT TCC TGG TAT G-3'; and reverse primer, 5'- CTT CCT CTT GTG CTC TTG-3'.

Real-time-PCR was performed with a StepOnePlus TM RT-PCR system (Applied Biosystems, USA). Thermal cycling conditions were as follows: 10 min at 95°C, 40 cycles of 15 s at 95°C and 60 s at 60°C. The specificity of the amplification reaction was determined by a melting curve analysis acquired by measuring fluorescence of SYBR Green I during a linear temperature transition from 65°C to 95°C at 0.3°C/s. Relative quantification was performed through normalizing various gene signals using GAPDH signal as a reference gene. PCR reactions were accomplished in triplicate in a 20 μl volume, including 400 ng cDNA, 10 μl SYBR Green PCR Master Mix (Maxima SYBR Green/ROX qPCR Master Mix [2X] [Thermo Scientific, CN. K0222]), nuclease-free water and 0.25 μmol forward and reverse primers.

Statistical analysis

LinReg PCR version 7.5 (software for analysis of RT-PCR data) was used and also Relative Expression Software Tool - XL = REST-XL © -version 3, Hentze Group, Germany (calculation software for the relative expression in RT-PCR using Pair Wise Fixed Reallocation Randomization Test © , Hentze Group, Germany) and Relative Expression Software Tool 2009 (REST version 2.0.7, IBM company, USA, Qiagen, Hilden, Germany) were used for the calculation of relative expression. The amounts of PTGIR mRNA in the lymphocyte standardized to the GAPDH mRNA by ΔΔCt method. All the other statistical analyzes were performed using SPSS for windows software (version 16, produced by SPSS Inc., IBM company, USA). The independent two-tailed t-test was used for comparison of mRNA expression.


  Results Top


Clinical variables

A case-control study consisted of 50 patients affected by migraine and 50 normal controls. The 50 patients had a mean age of 35.235 ± 10.99 years (range, 9-60 years) and female: male ratio in this group was 4:1. The 50 controls had a mean age of 35.058 ± 11.116 years (range, 8-59 years) and female: male ratio in this group was 3.7:1.3.

mRNA expression of prostaglandin I2 (prostacyclin) receptor

When we calculated relative expression, it showed up-regulation for cases than controls samples. PTGIR in the sample group (in comparison to controls group) is up-regulated by a mean of 2.103 (standard error range is 0.200-8.598) [Table 1].
Table 1: Normalized relative expression of PTGIR gene


Click here to view


Comparison of −ΔCt of PTGIR mRNA expression between migraine patients and the controls group showed that controls group had lower −ΔCt than the patient group [Figure 1].
Figure 1: Comparison of −ΔCt for prostaglandin I2 (prostacyclin) receptor (PTGIR) mRNA expression between cases and controls. Relative expression of PTGIR mRNA in migraine patients is significantly higher than the control group. CI; confidence interval, deltaCtC; delat Ct of Controls, deltaCtS; delat Ct of Samples

Click here to view


Furthermore, independent two-tailed t-test showed that PTGIR mRNA expression in cases was significantly higher than controls group (P = 0.010) [Table 2].
Table 2: Independent samples test analysis on-ΔCt of cases and control samples


Click here to view



  Discussion Top


The pathophysiology of migraine is complex, and its mechanisms are not identified, but the role of vasodilatation, neurogenic inflammation, and the central neuronal theory are more important topics in migraine studies. [15]

Some genes associated with migraine are listed. However, the role of these loci in migraine may be unknown. Determining of genes involved in the pathophysiology of migraine has major problems. First, there is no objective diagnostic test to evaluate the cases. Second, migraine is a polygenic disease and is considered as a multifactorial disorder. [16]

The human prostacyclin receptor has been identified as one of the seven transmembrane G-proteins coupled receptor, which plays an important roles in atheroprevention and cardioprotection. [17] The critical cardio-, vasculo-, and cytoprotective roles of prostacyclin (PGI2) have been well researched in multiple animal models. Furthermore, PGI2 receptor participates in signal transduction of the pain response, cardioprotection, and inflammation. [18],[19],[20],[21] However, its function in human disease has been less clear.

Studies in healthy individuals showed that PGI2 induced headache and dilatation of both extra- and intra-cerebral arteries. Delayed migraine-like attacks after PGI2 infusion have been reported in migraine patients and similar to normal volunteers immediate dilatation of extra-and intra-cerebral arteries was observed. [22],[23] PGI2 infusion caused immediate headache in 92% of migraine patients and it is associated with a significant drop in the mean flow velocity in the middle cerebral artery (MCA) (−10.5%) and dilatation of the superficial temporal artery (32.9%). [24] Migraine-like attacks after PGI2 infusion have been reported in 75% of patients. [23],[25]

Recently, prostaglandin I receptor mRNA transcripts were revealed in rat cranial arteries. Furthermore, IP receptor protein was aggregated to smooth muscle of the MCA, middle meningeal artery and basilar artery. [26]

Previous studies have focused mainly on increasing the amount of PGI2 in migraine, and PGI2 receptor has not been systematically studied in patients with migraine. In this study, we investigated the expression levels of PTGIR and significant difference of PTGIR expression in the blood of migraine patients compared with healthy controls shows that increased PTGIR may play a critical role in migraine and triggers migraine attacks in migraineurs. Accordingly, two conclusions can be found. First, mRNA expression of PTGIR in the blood of people with migraine could be considered as a biomarker. Second, using siRNA could be considered as a choice to inhibit of PTGIR expression for therapeutic aims. In addition, repression of PTGIR gene expression by methods such as using siRNA is probably suitable for therapy of migraine patients.

 
  References Top

1.
Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders: 2 nd edition. Cephalalgia 2004;24 Suppl 1:9-160.  Back to cited text no. 1
    
2.
Limmroth V, Michel MC. The prevention of migraine: A critical review with special emphasis on beta-adrenoceptor blockers. Br J Clin Pharmacol 2001;52:237-43.  Back to cited text no. 2
    
3.
Piane M, Lulli P, Farinelli I, Simeoni S, De Filippis S, Patacchioli FR, et al. Genetics of migraine and pharmacogenomics: Some considerations. J Headache Pain 2007;8:334-9.  Back to cited text no. 3
    
4.
Bartleson JD, Cutrer FM. Migraine update. Diagnosis and treatment. Minn Med 2010;93:36-41.  Back to cited text no. 4
    
5.
Goadsby PJ. The vascular theory of migraine - A great story wrecked by the facts. Brain 2009;132:6-7.  Back to cited text no. 5
    
6.
Brennan KC, Charles A. An update on the blood vessel in migraine. Curr Opin Neurol 2010;23:266-74.  Back to cited text no. 6
    
7.
Dodick DW. Examining the essence of migraine - Is it the blood vessel or the brain? A debate. Headache 2008;48:661-7.  Back to cited text no. 7
    
8.
Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 2011;412:671-87.  Back to cited text no. 8
    
9.
Tanaka Y, Yamaki F, Koike K, Toro L. New insights into the intracellular mechanisms by which PGI2 analogues elicit vascular relaxation: Cyclic AMP-independent, Gs-protein mediated-activation of MaxiK channel. Curr Med Chem Cardiovasc Hematol Agents 2004;2:257-65.  Back to cited text no. 9
    
10.
Boron WF, Boulpaep EL. Medical Physiology: A Cellular and Molecular Approaoch. Philadelphia: Elsevier/Saunders; 2005.  Back to cited text no. 10
    
11.
Haynes J Jr, Robinson J, Saunders L, Taylor AE, Strada SJ. Role of cAMP-dependent protein kinase in cAMP-mediated vasodilation. Am J Physiol 1992;262:H511-6.  Back to cited text no. 11
    
12.
Negash S, Gao Y, Zhou W, Liu J, Chinta S, Raj JU. Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins. Am J Physiol Lung Cell Mol Physiol 2007;293:L1012-20.  Back to cited text no. 12
    
13.
Kilfeather SA, Massarella A, Gorgolewska G, Ansell E, Turner P. Beta-adrenoceptor and epoprostenol (prostacyclin) responsiveness of lymphocytes in migraine patients. Postgrad Med J 1984;60:391-3.  Back to cited text no. 13
    
14.
Puig-Parellada P, Planas JM, Giménez J, Sánchez J, Gaya J, Tolosa E, et al. Plasma and saliva levels of PGI2 and TXA2 in the headache-free period of classical migraine patients. The effects of nicardipine. Headache 1991;31:156-8.  Back to cited text no. 14
    
15.
Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 2010;6:573-82.  Back to cited text no. 15
    
16.
Ducros A, Tournier-Lasserve E, Bousser MG. The genetics of migraine. Lancet Neurol 2002;1:285-93.  Back to cited text no. 16
    
17.
Stitham J, Arehart EJ, Gleim S, Douville K, MacKenzie T, Hwa J. Arginine (CGC) codon targeting in the human prostacyclin receptor gene (PTGIR) and G-protein coupled receptors (GPCR). Gene 2007;396:180-7.  Back to cited text no. 17
    
18.
Xiao CY, Hara A, Yuhki K, Fujino T, Ma H, Okada Y, et al. Roles of prostaglandin I (2) and thromboxane A (2) in cardiac ischemia-reperfusion injury: A study using mice lacking their respective receptors. Circulation 2001;104:2210-5.  Back to cited text no. 18
    
19.
Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 2002;296:539-41.  Back to cited text no. 19
    
20.
Egan KM, Lawson JA, Fries S, Koller B, Rader DJ, Smyth EM, et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 2004;306:1954-7.  Back to cited text no. 20
    
21.
Southall MD, Vasko MR. Prostaglandin receptor subtypes, EP3C and EP4, mediate the prostaglandin E2-induced cAMP production and sensitization of sensory neurons. J Biol Chem 2001;276:16083-91.  Back to cited text no. 21
    
22.
Wienecke T, Olesen J, Oturai PS, Ashina M. Prostacyclin (epoprostenol) induces headache in healthy subjects. Pain 2008;139:106-16.  Back to cited text no. 22
    
23.
Wienecke T, Olesen J, Ashina M. Prostaglandin I2 (epoprostenol) triggers migraine-like attacks in migraineurs. Cephalalgia 2010;30:179-90.  Back to cited text no. 23
    
24.
Antonova M, Wienecke T, Olesen J, Ashina M. Prostaglandins in migraine: Update. Curr Opin Neurol 2013;26:269-75.  Back to cited text no. 24
    
25.
Antonova M. Prostaglandins and prostaglandin receptor antagonism in migraine. Dan Med J 2013;60:B4635.  Back to cited text no. 25
    
26.
Myren M, Olesen J, Gupta S. Pharmacological and expression profile of the prostaglandin I (2) receptor in the rat craniovascular system. Vascul Pharmacol 2011;55:50-8.  Back to cited text no. 26
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
Previous article  Next article
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and me...
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed978    
    Printed16    
    Emailed0    
    PDF Downloaded166    
    Comments [Add]    

Recommend this journal