Users Online: 591
Home Print this page Email this page
Home About us Editorial board Search Browse articles Submit article Ahead of Print Instructions Subscribe Contacts Login 


 
Previous article Browse articles Next article 
ORIGINAL ARTICLE
Adv Biomed Res 2014,  3:94

Comparative evaluation of three different methods for HbA 1c measurement with High-performance liquid chromatography in diabetic patients


Department of Pathology, Isfahan University of Medial Science, Iran

Date of Submission07-Jan-2012
Date of Acceptance09-Jun-2012
Date of Web Publication25-Mar-2014

Correspondence Address:
Azar Baradaran
Department of Pathology, Al-Zahra Medical Center, Isfahan University of Medial Science
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2277-9175.129364

Rights and Permissions
  Abstract 

Background: The global prevalence of diabetes mellitus is increasing rapidly. Measurement of glycated hemoglobin, predominantly HbA 1c , is fundamental to the management of patients with diabetes. HbA 1c is used to monitor long-term glycemic control, adjust therapy, assess the quality of diabetes care and predict the risk for the development of complications. While HbA 1c is the standard method for long-term glycemic control in diabetic patients, there are different methods for measurement of HbA 1c and all laboratories do not use the reference method (high-performance liquid chromatography [HPLC]).The objective of this study is comparison of three different methods with HPLC to find out which method has an acceptable concordance and correlation with the reference method.
Materials and Methods: Fifty-eight diabetic patients were assessed in this study. The blood sample of each patient was checked with Diazyme (enzymatic assay), Nycocard (boronate-affinity binding) and Biosystem (micro column chromatography). The values of HbA 1c of each method were compared with the Knauer-HPLC results.
Results: The means of the differential values between each method and HPLC in the ANOVA test are as follows: M = 1.8, SD = 1.09 for Nycocard-HPLC; M = 1.5, SD = 1.08 for biosystem-HPLC; M = 1.3, SD = 1.2 for Diazyme-HPLC. Pearson's correlation coefficient between HPLC and Nycocard; 0.76, HPLC and Diazyme; 0.75 and between HPLC and Biosystem was 0.68. Linear regression parameters for each method with HPLC were also determined.
Conclusion: Diazyme had a better performance and showed a greater concordance with HPLC among others, although it was not an ideal alternative for HPLC.

Keywords: Column chromatography, diabetes mellitus, enzymatic assay, HbA 1c , High-performance liquid chromatography


How to cite this article:
Karami A, Baradaran A. Comparative evaluation of three different methods for HbA 1c measurement with High-performance liquid chromatography in diabetic patients. Adv Biomed Res 2014;3:94

How to cite this URL:
Karami A, Baradaran A. Comparative evaluation of three different methods for HbA 1c measurement with High-performance liquid chromatography in diabetic patients. Adv Biomed Res [serial online] 2014 [cited 2020 Jun 4];3:94. Available from: http://www.advbiores.net/text.asp?2014/3/1/94/129364


  Introduction Top


Metabolic disorders accompanied with diabetes result in pathophysiological changes due to hyperglycemia in various systems in the body. [1],[2],[3],[4] Because the complications of diabetes mellitus are related to glycemic control, normoglycemia is an appropriate goal for most of the patients. [2],[3],[4] Measurement of HbA 1C is a gold standard to check long-term glycemia in patients with diabetes mellitus. [5],[6],[7]] There are various methods to measure glycohemoglobolin, [1],[3],[8] but the difference in reported values by these methods is high, making the comparison of these values very difficult. [5],[9] In addition, various methods are under the influence of different factors such as types of anemia, pregnancy, splenectomy, transfusion and intake of medications (salicylates). [1],[3],[10] An economical method is defined as a precise, cost-effective, functional and convenient method. [11] High-performance liquid chromatography (HPLC) is a reference method to standardize other routine methods with long-term validity, accuracy and stability. [6],[12],[13],[14] In addition, calibration based on HPLC has been proven to enhance comparability among the various methods. [11],[15] Many specialists are not well satisfied due to the inconsistency of HbA 1C , reported through various methods, with patients' values attained by a reference method (HPLC). On the one hand, the HPLC device is very expensive, difficult and time consuming to work with; therefore, it needs professional personnel to work with, consequently making it impossible and not cost-effective for all laboratories. On the other hand, diabetic patients need HbA 1C frequent check, and most of them cannot afford the cost of HbA 1C by the HPLC method. Numerous studies have compared different methods; therefore, with regard to the above reasons, we decided to compare three routine methods: boronate affinity binding (Nycocard), enzymatic(Diazyme), column chromatography (Biosystem), with HPLC in order to declare which method reports are consistent and correlated with those of HPLC so as to replace that in clinical laboratories.


  Materials and Methods Top


This is an analytical correlation prospective study. The population studied included diabetic patients referred to the laboratory in Al-Zahra hospital in 2010, selected through simple sampling, who filled a consent form and the research questionnaire. The exclusion criteria were pregnancy, splenectomy, anemia, any type of blood transfusion in the past 3 months and intake of medication (salicylates).

Research design

A total of 58 diabetic patients were selected (31 female and 27 male). Firstly, after taking a blood sample from fasting patients (8 cc), the blood was collected in EDTA anticoagulant tubes. Next, 3/4 of the samples were sent to laboratory to measure HbA 1C with Diazyme, Nycocard and Biosystem instruments in Al-Zahra hospital, and the rest of the samples (1/4) was kept in the refrigerator for sending to another reference laboratory for HPLC measurements. Samples were transferred using a special ice bag. The HbA 1C level of each sample was separately measured by each device after calibration and giving the devices quality control samples in identical conditions. Our licensed level was considered to be 4%, which was under the coefficient variation percentage (CV%) (4.3%), based on the biological variation theory. [16]

Statistical analysis

The variance analysis test was employed for comparison of mean interval of attained values through all three methods with HPLC, and the Pearson correlation test and Regression analysis test were employed to determine the correlation values obtained by the three methods and the HPLC value. The data were analyzed through SPSS ver 15.5.

Procedure

Knauer-HPLC Germany (advanced scientific instruments) is a device designed based on affinity chromatography with high function.

The needed sample was 4 µL of blood, which was centrifuged after addition of the lysing solution. The supernatant was used to be injected into the device. HbA 1C measurement was indirectly done based, on the following formula:

y = 0.58 × + 1.75, × = glycosilated Hb (glycosilated hemoglobin), y = HbA 1C

Each test needs professional personnel, and lasts for 30 min.

Nycocard is a small device with a Nycocard reader kit, which is the base for the Boronat affinity binding test. Whole blood sample was mixed with chemical reagent based on kit instructions and the final product was poured on a test device. Next, rinsing liquid was added and, finally, the result was read by the Nycocard reader. Working with the device is convenient, and each test lasts for 10 min.

Biosystem is a kit containing chromatographic columns accompanied with chemical reagent, which should be used at room temperature. It functions based on spectrophotometer ion exchange. According to the kit instructions, we used chemical reagents with a separate column for each sample and, finally, collected the rinsed liquid from the column (HbA 1C ). We mixed the hemolysate and a chemical reagent to attain total Hb. Finally, the spectrophotometer was accessed by a device with a wavelength of 415 nm. HbA 1C was calculated using the following formula:



This is a very time consuming (about 1 h) and temperature-sensitive method, and should be administrated very carefully.

Diazyme is a kit containing chemical reagents and buffers made to be used in autoanalyzers based on enzyme reactions.

Whole blood is mixed with the lysate liquid based on the kit instruction and put into the autoanalyzer, Hitachi 717, shortly afterwards, and the optical density of the samples is assessed at a wavelength of 430 mm.

The result is reported in percentage, and working with this test is very convenient, needing 15 min for each test. It should be indicated that all four employed methods in this research are traceable to the DCCT/NGSP standards.


  Results Top


The obtained HbA 1C from each of the four methods include the min, max and mean values as well as the standard deviation presented in the following table [Table 1]
Table 1: HbA1C values obtained through various methods

Click here to view


Among the administrated methods, the mean value of Diazyme was closer to HPLC. Then, the parallel mean difference absolute value obtained by each method was calculated by that of HPLC to reach its mean as the following:

HPLC-Nycocard: Mean 1.8 ± 1.09.

HPLC-Biosytem: Mean 1.5 ± 1.08.

HPLC-Diazyme: Mean 1.3 ± 1.2.

The variance analysis test through repetitive observations showed a significant difference in the three obtained means (P < 0.001). The lowest mean was for HPLC-Diazyme, such that parallel values obtained by the Diazyme device were closer to HPLC compared with the other two methods. The Pearson correlation test showed a significant linear association between HbA 1C obtained values in each method with that of HPLC (P < 0.001). In addition, the regression line parameters obtained by each method based on HPLC have been presented in [Table 2], accompanied with the value of correlation (r). The regression line diagram has been presented in [Figure 1].
Figure 1: Comparison of the HbA1C results obtained by the three new methods (y) versus Knauer-high-performance liquid chromatography (HPLC) (X). (a) Biosystem versus HPLC, (b) Nycocard versus HPLC, (c) Diazyme versus HPLC

Click here to view
Table 2: Regression line parameters for y = ax + b and Pearson correlation coefficient for comparison of the measurement methods

Click here to view


The Pearson correlation coefficient (r) is much closer to 1 in Nycocard and HPLC compared with the two other methods, showing a tighter correlation between Nycocard and HPLC compared with the two other methods.


  Discussion Top


Based on statistics, the diabetic patients' population is growing. Microvascular complications of diabetes, including nephropathy, neuropathy and retinopathy, impose a great cost on the patients and the health system. [17],[18],[19],[20],[21],[22],[23]

The incidence of these complications is associated with patients' long-term glycemia. HbA 1C is a marker for patients' glycemic history in the past 2-3 months. Therefore, glycated Hb measurement is a standard method to investigate the long-term glycemic control of the patients. [1],[5],[24] Thus, its precise measurement by laboratory methods to follow-up the patients and treat them is essential. Because employing a reference method (HPLC) is not affordable for all laboratories, the necessity for replaceable methods whose reports are, as much as possible, closely and strongly correlated to those of HPLC is clarified. Various studies have been conducted in this field.

Halwachs-Baumann et al. compared variant HPLC, Roche immunoassay and Hi-auto A 1C analyze systems with the reference method of Diamat HPLC, and reported the Roche immunoassay to have the closest mean to that of the reference method (correlation of the employed methods with the reference method was 0.970, 0.977 and 0.972, respectively, showing an appropriate correlation with Diamat). [25]

Turpeinen et al. compared three devices. The Pearson correlation coefficient between poly CAT A (a HPLC based on column chromatography) and Diamat (an autoanalyzer based on ion exchange chromatography) was 0.9 ± 0.3. In addition, the correlation index between poly CAT A and IMX (based on Boronat affinity binding) was obtained as 0.85 ± 0.04. Restrictions of the Diamat method as a reference method were revealed by this study. It was also declared that there may be serious problems in clinical follow-ups in switching from one method to another. [26]

Hawkins et al. compared four point of care methods with the Roche tinaqant, and obtained the Pearson correlation coefficient of over 0.9 for all the four methods: DCA 2000, Nycocard, Diastat and D55. Diastat and DCA 2000 showed the best function and correlation with the central laboratory. He concluded that these two methods can be an appropriate replacement for each other, and also for the Roche method. [27]

In none of the above studies, was the mean value interval of each method with a reference method assessed. In the present study, the correlation index of Nycocard with HPLC and Diazyme with HPLC were obtained as 0.76 and 0.75, respectively, although, generally, Diazyme had a better function and closer mean values to those of HPLC compared with the other two methods. It also had the least value interval with HPLC compared with the other two methods.

However, because the Pearson correlation coefficient was 0.75 (so far from 1 and not counted as a complete correlation), this method cannot be an ideal method to replace HPLC.

In the present study, regression line formulas were obtained for all three methods, which can be employed to convert the obtained values to that of HPLC. It is recommended to conduct further studies with a higher sample size and on the other routine methods and devices used in clinical laboratories to facilitate patients' follow-up and treatment and to amend the existing problems.

 
  References Top

1.Syed IA. Glycated haemoglobin; past, present, and future are we ready for the change. J Pak Med Assoc 2011; 61:383-8.  Back to cited text no. 1
[PUBMED]    
2.Assadi F. The epidemic of pediatric chronic kidney disease the danger of skepticism. J Nephropathol 2012;1:61-4.  Back to cited text no. 2
[PUBMED]    
3.Bry?kiewicz ME, Majkowska L. Glycated hemoglobin (HbA1c) as a standard diagnostic criterium for diabetes? Pol Merkur Lekarski 2011;30:150-4.  Back to cited text no. 3
    
4.Gheissari A, Mehrasa P, Merrikhi A, Madihi Y. Acute kidney injury: A pediatric experience over 10 years at a tertiary care center. J Nephropathol 2012;1:101-8.  Back to cited text no. 4
[PUBMED]    
5.Bry?kiewicz ME, Majkowska L. Aspects of the standardization of glycated hemoglobin (HbA1c) measurement. Pol Merkur Lekarski 2011; 30:155-9.  Back to cited text no. 5
    
6.Jeppsson JO, Kobold U, Barr J, Finke A, Hoelzel W, Hoshino T, et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med 2002;40:78-89.  Back to cited text no. 6
    
7.Gaborit B, Nicolay A, Valéro R, Bégu A, Badens C, Bellanné-Chantelot C, et al. Comparison of performances of various HbA1c methods in Haemoglobin Camperdown variant detection: Consequences in diabetes management. Clin Chim Acta 2009;403:262-3.  Back to cited text no. 7
    
8.Klenk DC, Hermanson GT, Krohn RI, Fujimoto EK, Mallia AK, Smith PK, et al. Determination of glycosylated hemoglobin by affinity chromatography: Comparison with colorimetric and ion-exchange methods, and effects of common interferences. Clin Chem 1982;28:2088-94.  Back to cited text no. 8
[PUBMED]    
9.John WG. Glycated haemoglobin analyses--assessment of within- and between-laboratory performance in a large UK region. Ann Clin Biochem 1987;24:453-60.  Back to cited text no. 9
[PUBMED]    
10.Shapiro DE. The interpretation of diagnostic tests. Stat Methods Med Res 1999;8:113-34.  Back to cited text no. 10
[PUBMED]    
11.Bodor GS, Little RR, Garrett N, Brown W, Goldstein DE, Nahm H. Standardization of glycohemoglobin determinations in the clinical laboratory: Three years of experience. Clin Chem 1992;38:2414-8.  Back to cited text no. 11
    
12.Reinauer H. Biochemistry of protein glycation in diabetes mellitus. Klin Lab 1993;39:984-7.  Back to cited text no. 12
    
13.Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM. What is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry. Clin Chem 1998;44:1951-8.  Back to cited text no. 13
    
14.Roberts NB, Amara AB, Morris M, Green BN. Long-term evaluation of electrospray ionization mass spectrometric analysis of glycated hemoglobin. Clin Chem 2001;47:316-21.  Back to cited text no. 14
    
15.Weykamp CW, Penders TJ, Muskiet FA, van der Slik W. Effect of calibration on dispersion of glycohemoglobin values determined by 111 laboratories using 21 methods. Clin Chem 1994;40:138-44.  Back to cited text no. 15
    
16.James Westgard Founder; Biological variation database specifications. 2010. Available from: http://www.westgard.com/biodatabase1.htm. [Last accessed on April 6, 2013]  Back to cited text no. 16
    
17.Hollander P, Spellman C.Controversies in prediabetes: do we have a diagnosis? Postgrad Med 2012;124:109-18.  Back to cited text no. 17
    
18.Tayebi Khosroshahi H. Short history about renal transplantation program in Iran and the world: Special focus on world kidney day 2012. J Nephropathol 2012;1:5-10.  Back to cited text no. 18
[PUBMED]    
19.Einollahi B. Are acquired cystic kidney disease and autosomal dominant polycystic kidney disease risk factors for renal cell carcinoma in kidney transplant patients? J Nephropathol 2012;1:65-8.  Back to cited text no. 19
[PUBMED]    
20.Goldberg RB, Mather K. Targeting the consequences of the metabolic syndrome in the diabetes prevention program. Arterioscler Thromb Vasc Biol 2012;32:2077-90.  Back to cited text no. 20
    
21.Tolou-Ghamari Z. Nephro and neurotoxicity, mechanisms of rejection: A review on Tacrolimus and Cyclosporin in organ transplantation. J Nephropathol 2012;1:23-30.  Back to cited text no. 21
[PUBMED]    
22.Fujimoto WY, Boyko EJ, Hayashi T, Kahn SE, Leonetti DL, McNeely MJ, et al. Risk Factors for Type 2 Diabetes: Lessons Learned from Japanese Americans in Seattle. J Diabetes Investig 2012;3:212-24.  Back to cited text no. 22
    
23.Khajehdehi P. Turmeric: Reemerging of a neglected Asian traditional remedy. J Nephropathol 2012;1:17-22.  Back to cited text no. 23
[PUBMED]    
24.Hoelzel W, Miedema K. Development of a reference system for the international standardisation of HbA1c/glycohemoglobin determinations. J Int Fed Clin Chem 1996;9:62-4, 66-7.  Back to cited text no. 24
    
25.Halwachs-Baumann G, Katzensteiner S, Schnedl W, Pürstner P, Pieber T, Wilders-Truschnig M. Comparative evaluation of three assay systems for automated determination of hemoglobin A1c. Clin Chem 1997;43:511-7.  Back to cited text no. 25
    
26.Turpeinen U, Karjalainen U, Stenman UH. Three assays for glycohemoglobin compared. Clin Chem 1995;41:191-5.  Back to cited text no. 26
    
27.Hawkins RC. Comparison of four point-of-care HbA1c analytical systems against central laboratory analysis. Singapore Med J 2003;44:8-11.  Back to cited text no. 27
[PUBMED]    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Changes in hemoglobin profile reflect autologous blood transfusion misuse in sports
Nicola Lamberti,Alessia Finotti,Jessica Gasparello,Ilaria Lampronti,Christel Zambon,Lucia Carmela Cosenza,Enrica Fabbri,Nicoletta Bianchi,Francesca Dalla Corte,Maurizio Govoni,Roberto Reverberi,Roberto Gambari,Fabio Manfredini
Internal and Emergency Medicine. 2018;
[Pubmed] | [DOI]
2 Magnetite-Quantum Dot Immunoarray for Plasmon-Coupled-Fluorescence Imaging of Blood Insulin and Glycated Hemoglobin
Vini Singh,Rajasekhara Nerimetla,Ming Yang,Sadagopan Krishnan
ACS Sensors. 2017;
[Pubmed] | [DOI]
3 Association of lipocalin-2 level, glycemic status and obesity in type 2 diabetes mellitus
Areej E. Elkhidir,Halima B. Eltaher,Abdelrahim O. Mohamed
BMC Research Notes. 2017; 10(1)
[Pubmed] | [DOI]
4 New approach to the synthesis of a functional macroporous poly(vinyl alcohol) network and design of boronate affinity sorbent for protein separation
Vladimir E. Tikhonov,Inesa V. Blagodatskikh,Vladimir A. Postnikov,Zinaida S. Klemenkova,Oxana V. Vyshivannaya,Alexei R. Khokhlov
European Polymer Journal. 2016; 75: 1
[Pubmed] | [DOI]
5 Effect of the different assays of HbA1c on diabetic patients monitoring
Farideh Razi,Ensieh Nasli Esfahani,Marjan Rahnamaye Farzami,Ali Tootee,Mostafa Qorbani,Soltan Ahmad Ebrahimi,Mehrzad Nahid,Parvin Pasalar
Journal of Diabetes & Metabolic Disorders. 2015; 14(1)
[Pubmed] | [DOI]



 

Top
Previous article  Next article
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1547    
    Printed26    
    Emailed0    
    PDF Downloaded418    
    Comments [Add]    
    Cited by others 5    

Recommend this journal